Single Choice

The acute angle between two lines whose direction ratios are $$2,3,6$$ and $$1,2,2$$ is

A$$\displaystyle \cos ^{ -1 }{ \left( \frac { 20 }{ 21 } \right) } $$
Correct Answer
B$$\displaystyle \cos ^{ -1 }{ \left( \frac { 18 }{ 21 } \right) } $$
C$$\displaystyle \cos ^{ -1 }{ \left( \frac { 8 }{ 21 } \right) } $$
DNone of these

Solution

We have $${ a }_{ 1 }=2,{ b }_{ 1 }=3,{ c }_{ 1 }=6,{ a }_{ 2 }=1,{ b }_{ 2 }=2,{ c }_{ 2 }=2$$
If $$\theta$$ is the angle between two lines whose direction ratios are given, then
$$\cos { \theta } =\displaystyle\frac { { a }_{ 1 }{ a }_{ 2 }+{ b }_{ 1 }{ b }_{ 2 }+{ c }_{ 1 }{ c }_{ 2 } }{ \sqrt { { \left( { a }_{ 1 } \right) }^{ 2 }+{ \left( { b }_{ 1 } \right) }^{ 2 }+{ \left( { c }_{ 1 } \right) }^{ 2 } } \sqrt { { \left( { a }_{ 2 } \right) }^{ 2 }+{ \left( { b }_{ 2 } \right) }^{ 2 }+{ \left( { c }_{ 2 } \right) }^{ 2 } } } $$
$$\Rightarrow \cos { \theta } =\displaystyle \frac { 2\times 1+3\times 2+6\times 2 }{ \sqrt { { \left( 2 \right) }^{ 2 }+{ \left( 3 \right) }^{ 2 }+{ \left( 6 \right) }^{ 2 } } \sqrt { { \left( 1 \right) }^{ 2 }+{ \left( 2 \right) }^{ 2 }+{ \left( 2 \right) }^{ 2 } } } =\frac { 20 }{ 21 }$$
$$ \Rightarrow \theta =\cos ^{ -1 }{ \dfrac { 20 }{ 21 } } $$


SIMILAR QUESTIONS

3D Geometry

The angle made by line $$r[cos \theta - \sqrt{3} sin \theta ]=5$$ with initial line is

3D Geometry

If $$(2, -1, 2)$$ and $$(K, 3, 5)$$ are the triads of direction ratios of two lines and the angle between them is $$45^{\circ}$$, then a value of $$K$$ is

3D Geometry

Find the angle between the two straight lines whose direction cosines are given by $$2l+2m-n=0$$ and $$mn+nl+lm=0$$.

3D Geometry

If the angle between the lines, $$\displaystyle\frac{x}{2}=\frac{y}{2}=\frac{z}{1}$$ and $$\displaystyle\frac{5-x}{-2}=\frac{7y-14}{P}=\frac{z-3}{4}$$ is $$\cos^{-1}\displaystyle \left(\frac{2}{3}\right)$$, then p is equal to?

3D Geometry

Find the angle between the following pair of lines: (i) $$\vec { r } =2\hat { i } -5\hat { j } +\hat { k } +\lambda \left( 3\hat { i } -2\hat { j } +6\hat { k } \right) $$ and $$\vec { r } =7\hat { i } -6\hat { k } +\mu \left( \hat { i } +2\hat { j } +2\hat { k } \right) $$ (ii) $$\vec { r } =3\hat { i } +\hat { j } -2\hat { k } +\lambda \left( \hat { i } -\hat { j } -2\hat { k } \right) $$ and $$\vec { r } =2\hat { i } -\hat { j } -56\hat { k } +\mu \left( \hat { 3i } -5\hat { j } -4\hat { k } \right) $$

3D Geometry

Find the angle between the following pairs of lines: $$\vec {r} = 3\hat {i} + \hat {j} - 2\hat {k} + \lambda (\hat {i} + \hat {j} - 2\hat {k})$$ and $$\vec {r} = 2\hat {i} - \hat {j} - 56\hat {k} + \mu (3\hat {i} - 5\hat {j} - 4\hat {k})$$.

3D Geometry

Find the angle between the following pair of lines: (i) $$\cfrac{x-2}{2}=\cfrac{y-1}{5}=\cfrac{z+3}{-3}$$ and $$\cfrac{x+2}{-1}=\cfrac{y-4}{8}=\cfrac{z-5}{4}$$ (ii) $$\cfrac{x}{2}=\cfrac{y}{2}=\cfrac{z}{1}$$ and $$\cfrac{x-5}{4}=\cfrac{y-2}{1}=\cfrac{z-3}{8}$$

3D Geometry

The angle between the following pair of lines: $$\cfrac{x}{2}=\cfrac{y}{2}=\cfrac{z}{1}$$ and $$\cfrac{x-5}{4}=\cfrac{y-2}{1}=\cfrac{z-3}{8}$$ is $$\theta = \cos^{-1}\dfrac{a}{3}$$ then $$a=$$

3D Geometry

Find the values of $$p$$ so the line $$\cfrac{1-x}{3}=\cfrac{7y-14}{2p}=\cfrac{z-3}{2}$$ and $$\cfrac{7-7x}{3p}=\cfrac{y-5}{1}=\cfrac{6-z}{5}$$ are at right angles.

3D Geometry

Find the angle between the lines whose direction ratios are $$a,b,c$$ and $$b-c, c-a, a-b$$

Contact Details