Subjective Type

Find the values of $$p$$ so the line $$\cfrac{1-x}{3}=\cfrac{7y-14}{2p}=\cfrac{z-3}{2}$$ and $$\cfrac{7-7x}{3p}=\cfrac{y-5}{1}=\cfrac{6-z}{5}$$ are at right angles.

Solution

The given equations can be written in the standard form as
$$\cfrac{x-1}{-3}=\cfrac

{ y-2 }{ \cfrac { 2p }{ 7 } } =\cfrac{z-3}{2}$$ and $$\cfrac { x-1 }{

\cfrac { -3p }{ 7 } } =\cfrac{y-5}{1}=\cfrac{z-6}{-5}$$
The direction ratios of the lines are $$-3, \cfrac{-3p}{7}, 2$$ and $$\cfrac {-3p}{7}, 1, -5$$ respectively.
Two lines with direction ratios $${a}_{1}, {b}_{1}, {c}_{1}$$ and $${a}_{2}, {b}_{2}, {c}_{2}$$, are perpendicular to each other, if $${a}_{1}{a}_{2}+{b}_{1}{b}_{2}+{c}_{1}{c}_{2}=0$$.
$$\therefore$$ $$(-3)\left( \cfrac { -3p }{ 7 } \right)+\left( \cfrac { -3p }{ 7 } \right) .(1)+(2).(-5)=0$$
$$\Rightarrow$$ $$\cfrac{9p}{7}+\cfrac{2p}{7}=10$$
$$\Rightarrow$$ $$11p=70$$
$$\Rightarrow p=\cfrac{70}{11}$$


SIMILAR QUESTIONS

3D Geometry

The angle made by line $$r[cos \theta - \sqrt{3} sin \theta ]=5$$ with initial line is

3D Geometry

The acute angle between two lines whose direction ratios are $$2,3,6$$ and $$1,2,2$$ is

3D Geometry

If $$(2, -1, 2)$$ and $$(K, 3, 5)$$ are the triads of direction ratios of two lines and the angle between them is $$45^{\circ}$$, then a value of $$K$$ is

3D Geometry

Find the angle between the two straight lines whose direction cosines are given by $$2l+2m-n=0$$ and $$mn+nl+lm=0$$.

3D Geometry

If the angle between the lines, $$\displaystyle\frac{x}{2}=\frac{y}{2}=\frac{z}{1}$$ and $$\displaystyle\frac{5-x}{-2}=\frac{7y-14}{P}=\frac{z-3}{4}$$ is $$\cos^{-1}\displaystyle \left(\frac{2}{3}\right)$$, then p is equal to?

3D Geometry

Find the angle between the following pair of lines: (i) $$\vec { r } =2\hat { i } -5\hat { j } +\hat { k } +\lambda \left( 3\hat { i } -2\hat { j } +6\hat { k } \right) $$ and $$\vec { r } =7\hat { i } -6\hat { k } +\mu \left( \hat { i } +2\hat { j } +2\hat { k } \right) $$ (ii) $$\vec { r } =3\hat { i } +\hat { j } -2\hat { k } +\lambda \left( \hat { i } -\hat { j } -2\hat { k } \right) $$ and $$\vec { r } =2\hat { i } -\hat { j } -56\hat { k } +\mu \left( \hat { 3i } -5\hat { j } -4\hat { k } \right) $$

3D Geometry

Find the angle between the following pairs of lines: $$\vec {r} = 3\hat {i} + \hat {j} - 2\hat {k} + \lambda (\hat {i} + \hat {j} - 2\hat {k})$$ and $$\vec {r} = 2\hat {i} - \hat {j} - 56\hat {k} + \mu (3\hat {i} - 5\hat {j} - 4\hat {k})$$.

3D Geometry

Find the angle between the following pair of lines: (i) $$\cfrac{x-2}{2}=\cfrac{y-1}{5}=\cfrac{z+3}{-3}$$ and $$\cfrac{x+2}{-1}=\cfrac{y-4}{8}=\cfrac{z-5}{4}$$ (ii) $$\cfrac{x}{2}=\cfrac{y}{2}=\cfrac{z}{1}$$ and $$\cfrac{x-5}{4}=\cfrac{y-2}{1}=\cfrac{z-3}{8}$$

3D Geometry

The angle between the following pair of lines: $$\cfrac{x}{2}=\cfrac{y}{2}=\cfrac{z}{1}$$ and $$\cfrac{x-5}{4}=\cfrac{y-2}{1}=\cfrac{z-3}{8}$$ is $$\theta = \cos^{-1}\dfrac{a}{3}$$ then $$a=$$

3D Geometry

Find the angle between the lines whose direction ratios are $$a,b,c$$ and $$b-c, c-a, a-b$$

Contact Details