Indefinite Integrals
$$\displaystyle \int \frac {\sin^8 x-\cos^8 x}{(1-2\sin^2x \cos^2x)}dx$$ is equal is to
Find the integrals of the functions $$\sin x \sin 2x \sin 3x$$
It is known that, $$\sin A \sin B=\frac {1}{2}\left \{\cos (A-B)-\cos (A+B)\right \}$$
$$\therefore\displaystyle \int \sin x \sin 2x \sin 3x dx=\int [\sin x\cdot \frac {1}{2}\left \{\cos (2x-3x)-\cos (2x+3x)\right \}]dx$$
$$\displaystyle =\frac {1}{2}\int (\sin x \cos (-x)-\sin x \cos 5x)dx$$
$$\displaystyle =\frac {1}{2}\int (\sin x \cos x-\sin x \cos 5x)dx$$
$$\displaystyle =\frac {1}{2}\int \frac {\sin 2x}{2}dx-\frac {1}{2}\int \sin x \cos 5x dx$$
$$\displaystyle =\frac {1}{4}\left [\frac {-\cos 2x}{2}\right ]-\frac {1}{2}\int \left \{\frac {1}{2}\sin (x+5x)+\sin (x-5x)\right \}dx$$
$$\displaystyle =\frac {-\cos 2x}{8}-\frac {1}{4}\int (\sin 6x+\sin (-4x))dx$$
$$\displaystyle =\frac {-\cos 2x}{8}-\frac {1}{4}\left [\frac {-\cos 6x}{3}+\frac {\cos 4x}{4}\right ]+C$$
$$\displaystyle =\frac {-\cos 2x}{8}-\frac {1}{8}\left [\frac {-\cos 6x}{3}+\frac {\cos 4x}{2}\right ]+C$$
$$\displaystyle =\frac {1}{8}\left [\frac {\cos 6x}{3}-\frac {\cos 4x}{2}-\cos 2x\right ]+C$$
$$\displaystyle \int \frac {\sin^8 x-\cos^8 x}{(1-2\sin^2x \cos^2x)}dx$$ is equal is to
Let $$\alpha \epsilon (0, \pi/2)$$ be fixed. If the integral $$\int \dfrac {\tan x + \tan \alpha}{\tan x - \tan \alpha} dx =$$ $$A (x) \cos 2\alpha + B(x) \sin 2\alpha + C$$, where $$C$$ is a constant of integration, then the functions $$A(x)$$ and $$B(x)$$ are respectively.
$$\int \dfrac {dx}{\cos x + \sqrt {3}\sin x}$$ equals
Find the integral of $$\displaystyle \int \frac {\sec^2x}{co\sec^2x}dx$$
Find the integral of $$\displaystyle \int \frac {2-3 \sin x}{\cos^2x}dx$$
Integrate the function $$\sin (ax + b) \cos (ax + b)$$
Integrate the function $$\displaystyle \frac {2\cos x-3 \sin x}{6 \cos x+4 \sin x}$$
$$\displaystyle \int \frac {dx}{\sin^2 x \cos^2x}$$ equals
$$\int_{\cos{2x}\cos{4x}\cos{6x}dx}$$
Find the integrals of the functions $$\sin 4x \sin 8x$$