Subjective Type

Integrate the function $$\sin (ax + b) \cos (ax + b)$$

Solution

$$\displaystyle \sin (ax+b)\cos (ax+b)=\frac {2\sin (ax+b)\cos (ax+b)}{2}=\frac {\sin 2(ax+b)}{2}$$
Put $$2(ax+b)=t$$
$$\Rightarrow 2adx=dt$$
$$\displaystyle =>\int \frac {\sin 2(ax+b)}{2}dx=\frac {1}{2}\int \frac {\sin t dt}{2a}$$
$$\displaystyle =\frac {1}{4a}[-\cos t]+C$$
$$\displaystyle =\frac {-1}{4a}\cos 2(ax+b)+C$$


SIMILAR QUESTIONS

Indefinite Integrals

$$\displaystyle \int \frac {\sin^8 x-\cos^8 x}{(1-2\sin^2x \cos^2x)}dx$$ is equal is to

Indefinite Integrals

Let $$\alpha \epsilon (0, \pi/2)$$ be fixed. If the integral $$\int \dfrac {\tan x + \tan \alpha}{\tan x - \tan \alpha} dx =$$ $$A (x) \cos 2\alpha + B(x) \sin 2\alpha + C$$, where $$C$$ is a constant of integration, then the functions $$A(x)$$ and $$B(x)$$ are respectively.

Indefinite Integrals

$$\int \dfrac {dx}{\cos x + \sqrt {3}\sin x}$$ equals

Indefinite Integrals

Find the integral of $$\displaystyle \int \frac {\sec^2x}{co\sec^2x}dx$$

Indefinite Integrals

Find the integral of $$\displaystyle \int \frac {2-3 \sin x}{\cos^2x}dx$$

Indefinite Integrals

Integrate the function $$\displaystyle \frac {2\cos x-3 \sin x}{6 \cos x+4 \sin x}$$

Indefinite Integrals

$$\displaystyle \int \frac {dx}{\sin^2 x \cos^2x}$$ equals

Indefinite Integrals

$$\int_{\cos{2x}\cos{4x}\cos{6x}dx}$$

Indefinite Integrals

Find the integrals of the functions $$\sin x \sin 2x \sin 3x$$

Indefinite Integrals

Find the integrals of the functions $$\sin 4x \sin 8x$$

Contact Details