Indefinite Integrals
$$\displaystyle \int \frac {\sin^8 x-\cos^8 x}{(1-2\sin^2x \cos^2x)}dx$$ is equal is to
Let $$\alpha \epsilon (0, \pi/2)$$ be fixed. If the integral $$\int \dfrac {\tan x + \tan \alpha}{\tan x - \tan \alpha} dx =$$ $$A (x) \cos 2\alpha + B(x) \sin 2\alpha + C$$, where $$C$$ is a constant of integration, then the functions $$A(x)$$ and $$B(x)$$ are respectively.
$$\int \dfrac {\tan x + \tan \alpha}{\tan x - \tan \alpha} dx = \int \dfrac {\sin (x + \alpha)}{\sin (x - \alpha)}dx$$
Let $$x - \alpha = t$$
$$\Rightarrow \int \dfrac {\sin (t + 2\alpha)}{\sin t}dt = \int \cos 2\alpha dt + \int \cot (t)\sin 2\alpha dt$$
$$= t.\cos 2\alpha + ln |\sin t|.\sin 2\alpha + C$$
$$= (x - \alpha)\cos 2\alpha + ln|\sin (x - \alpha)|.\sin 2\alpha + C$$.
$$\displaystyle \int \frac {\sin^8 x-\cos^8 x}{(1-2\sin^2x \cos^2x)}dx$$ is equal is to
$$\int \dfrac {dx}{\cos x + \sqrt {3}\sin x}$$ equals
Find the integral of $$\displaystyle \int \frac {\sec^2x}{co\sec^2x}dx$$
Find the integral of $$\displaystyle \int \frac {2-3 \sin x}{\cos^2x}dx$$
Integrate the function $$\sin (ax + b) \cos (ax + b)$$
Integrate the function $$\displaystyle \frac {2\cos x-3 \sin x}{6 \cos x+4 \sin x}$$
$$\displaystyle \int \frac {dx}{\sin^2 x \cos^2x}$$ equals
$$\int_{\cos{2x}\cos{4x}\cos{6x}dx}$$
Find the integrals of the functions $$\sin x \sin 2x \sin 3x$$
Find the integrals of the functions $$\sin 4x \sin 8x$$