Indefinite Integrals
$$\displaystyle \int \frac {\sin^8 x-\cos^8 x}{(1-2\sin^2x \cos^2x)}dx$$ is equal is to
$$\int \dfrac {dx}{\cos x + \sqrt {3}\sin x}$$ equals
$$\int \dfrac {dx}{\cos x + \sqrt {3}\sin x}$$
$$= \dfrac {1}{2}\int \dfrac {dx}{\dfrac {1}{2}\cos x + \dfrac {\sqrt {3}}{2}\sin x}$$
$$= \dfrac {1}{2}\int \dfrac {dx}{\cos \dfrac {\pi}{3} \cos x + \sin \dfrac {\pi}{3} \sin x}$$
$$= \dfrac {1}{2}\int \dfrac {dx}{\cos \left (x - \dfrac {\pi}{3}\right )}$$
$$= \dfrac {1}{2} \int \sec \left (x - \dfrac {\pi}{3}\right )dx$$
$$= \dfrac {1}{2}\log \tan \left (\dfrac {x}{2} - \dfrac {\pi}{6} + \dfrac {\pi}{4}\right ) + C$$
$$= \dfrac {1}{2}\log \tan \left (\dfrac {x}{2} + \dfrac {\pi}{12}\right ) + C$$
Hence, option A is correct.
$$\displaystyle \int \frac {\sin^8 x-\cos^8 x}{(1-2\sin^2x \cos^2x)}dx$$ is equal is to
Let $$\alpha \epsilon (0, \pi/2)$$ be fixed. If the integral $$\int \dfrac {\tan x + \tan \alpha}{\tan x - \tan \alpha} dx =$$ $$A (x) \cos 2\alpha + B(x) \sin 2\alpha + C$$, where $$C$$ is a constant of integration, then the functions $$A(x)$$ and $$B(x)$$ are respectively.
Find the integral of $$\displaystyle \int \frac {\sec^2x}{co\sec^2x}dx$$
Find the integral of $$\displaystyle \int \frac {2-3 \sin x}{\cos^2x}dx$$
Integrate the function $$\sin (ax + b) \cos (ax + b)$$
Integrate the function $$\displaystyle \frac {2\cos x-3 \sin x}{6 \cos x+4 \sin x}$$
$$\displaystyle \int \frac {dx}{\sin^2 x \cos^2x}$$ equals
$$\int_{\cos{2x}\cos{4x}\cos{6x}dx}$$
Find the integrals of the functions $$\sin x \sin 2x \sin 3x$$
Find the integrals of the functions $$\sin 4x \sin 8x$$