Subjective Type

Integrate the function $$\displaystyle \frac {2\cos x-3 \sin x}{6 \cos x+4 \sin x}$$

Solution

Given $$\displaystyle \frac {2\cos x-3 \sin x}{6 \cos x+4 \sin x}=\frac {2\cos x-3 \sin x}{2(3 \cos x+2 \sin x)}$$

Let $$3 \cos x+2 \sin x=t$$

$$\therefore (-3 \sin x+2 \cos x)dx=dt$$

$$\displaystyle \int \frac {2 \cos x-3 \sin x}{6 \cos x+4 \sin x}dx=\int \frac {dt}{2t}$$

$$\displaystyle =\frac {1}{2}\int \frac {1}{t}dt$$

$$\displaystyle =\frac {1}{2}\log |t|+C$$

$$\displaystyle =\frac {1}{2}\log |2 \sin x+3 \cos x|+C$$


SIMILAR QUESTIONS

Indefinite Integrals

$$\displaystyle \int \frac {\sin^8 x-\cos^8 x}{(1-2\sin^2x \cos^2x)}dx$$ is equal is to

Indefinite Integrals

Let $$\alpha \epsilon (0, \pi/2)$$ be fixed. If the integral $$\int \dfrac {\tan x + \tan \alpha}{\tan x - \tan \alpha} dx =$$ $$A (x) \cos 2\alpha + B(x) \sin 2\alpha + C$$, where $$C$$ is a constant of integration, then the functions $$A(x)$$ and $$B(x)$$ are respectively.

Indefinite Integrals

$$\int \dfrac {dx}{\cos x + \sqrt {3}\sin x}$$ equals

Indefinite Integrals

Find the integral of $$\displaystyle \int \frac {\sec^2x}{co\sec^2x}dx$$

Indefinite Integrals

Find the integral of $$\displaystyle \int \frac {2-3 \sin x}{\cos^2x}dx$$

Indefinite Integrals

Integrate the function $$\sin (ax + b) \cos (ax + b)$$

Indefinite Integrals

$$\displaystyle \int \frac {dx}{\sin^2 x \cos^2x}$$ equals

Indefinite Integrals

$$\int_{\cos{2x}\cos{4x}\cos{6x}dx}$$

Indefinite Integrals

Find the integrals of the functions $$\sin x \sin 2x \sin 3x$$

Indefinite Integrals

Find the integrals of the functions $$\sin 4x \sin 8x$$

Contact Details