Indefinite Integrals
$$\displaystyle \int \frac {\sin^8 x-\cos^8 x}{(1-2\sin^2x \cos^2x)}dx$$ is equal is to
Integrate the function $$\displaystyle \frac {2\cos x-3 \sin x}{6 \cos x+4 \sin x}$$
Given $$\displaystyle \frac {2\cos x-3 \sin x}{6 \cos x+4 \sin x}=\frac {2\cos x-3 \sin x}{2(3 \cos x+2 \sin x)}$$
Let $$3 \cos x+2 \sin x=t$$
$$\therefore (-3 \sin x+2 \cos x)dx=dt$$
$$\displaystyle \int \frac {2 \cos x-3 \sin x}{6 \cos x+4 \sin x}dx=\int \frac {dt}{2t}$$
$$\displaystyle =\frac {1}{2}\int \frac {1}{t}dt$$
$$\displaystyle =\frac {1}{2}\log |t|+C$$
$$\displaystyle =\frac {1}{2}\log |2 \sin x+3 \cos x|+C$$
$$\displaystyle \int \frac {\sin^8 x-\cos^8 x}{(1-2\sin^2x \cos^2x)}dx$$ is equal is to
Let $$\alpha \epsilon (0, \pi/2)$$ be fixed. If the integral $$\int \dfrac {\tan x + \tan \alpha}{\tan x - \tan \alpha} dx =$$ $$A (x) \cos 2\alpha + B(x) \sin 2\alpha + C$$, where $$C$$ is a constant of integration, then the functions $$A(x)$$ and $$B(x)$$ are respectively.
$$\int \dfrac {dx}{\cos x + \sqrt {3}\sin x}$$ equals
Find the integral of $$\displaystyle \int \frac {\sec^2x}{co\sec^2x}dx$$
Find the integral of $$\displaystyle \int \frac {2-3 \sin x}{\cos^2x}dx$$
Integrate the function $$\sin (ax + b) \cos (ax + b)$$
$$\displaystyle \int \frac {dx}{\sin^2 x \cos^2x}$$ equals
$$\int_{\cos{2x}\cos{4x}\cos{6x}dx}$$
Find the integrals of the functions $$\sin x \sin 2x \sin 3x$$
Find the integrals of the functions $$\sin 4x \sin 8x$$