Sequences and Series
If $$a_1, a_2, a_3,....a_n$$ are in A.P. and $$a_1+ a_4 + a_7 + ..... + a_{16} = 114$$, then $$a_1 + a_6 + a_{11} + a_{16}$$ is equal to:
Let $$a_1, a_2, a_3, ..., a_{11}$$ be real numbers satisfying $$a_1 = 15,27 - 2a_2 > 0$$ and $$a_k = 2a_{k - 1} - a_{k - 2}$$ for $$k = 3, 4, ...., 11$$. If $$\dfrac{a_1^2 + a_2^2 + .... + a+{11}^2}{11} = 90$$, then the value of $$\dfrac{a_1 + a_2 + .... + a_{11}}{11}$$ is equal to.
$$a_k = 2a_{k - 1} - a_{k - 2}\Rightarrow a_1, a_2,..., a_{11}$$ are in A.P.
$$\therefore \ \ \dfrac{a_1^2 + a_2^2 + ... + a_{11}^2}{11} = \dfrac{11a^2 + 35 \times 11d^2 + 10ad}{11} = 90$$
$$\Rightarrow \ \ 225 + 35d^2 + 15d = 90$$
$$35d^2 + 150d + 135 = 0 \Rightarrow \ \ -3, \dfrac{-9}{7}$$
Given $$a_2 < \dfrac{27}{2}$$,
we get $$d = -3$$ and $$d = \dfrac{-9}{7}$$
$$\Rightarrow \ \ \dfrac{a_1 + a_2 + ... + a_{11}}{11} = \dfrac{11}{2}[30 - 10 \times 3] = 0$$
If $$a_1, a_2, a_3,....a_n$$ are in A.P. and $$a_1+ a_4 + a_7 + ..... + a_{16} = 114$$, then $$a_1 + a_6 + a_{11} + a_{16}$$ is equal to:
If the sum of the first n terms of the series $$\sqrt{3}+\sqrt{75}+\sqrt{243}+\sqrt{507}+....$$ is $$435\sqrt{3}$$, then n equals.
Let $$a_{1},\ a_{2},\ a_{3},\ \ldots,\ a_{100}$$ be an arithmetic progression with $$a_{1}=3$$ and $$S_{p}$$ is sum of 100 terms . For any integer $$n$$ with $$1\leq n \leq 20$$, let $$ m=5n$$. If $$\dfrac{S_{m}}{S_{n}}$$ does not depend on $$n$$, then $$a_{2}$$ is
$$\displaystyle{ a }_{ 1 }=3,{ a }_{ n }={ 3a }_{ n-1 }+2$$ for all $$ n>1$$
Find the sum of odd integers from $$1$$ to $$2001$$.
Find the sum to $$n$$ terms of the $$A.P.$$, whose $$k^{th}$$ term is $$5k+1$$.
If the sum of first $$p$$ terms of an A.P.is equal to the sum of the first $$q$$ terms, then find the sum of the first $$(p+q)$$ terms.
Sum of the first $$p, q$$ and $$r$$ terms of an A.P. are $$a,b$$ and $$c$$ respectively. Prove that $$\displaystyle \frac { a }{ p } (q-r)+\frac { b }{ q } (r-p)+\frac { c }{ r } (p-q)=0$$
Between $$1$$ and $$31$$, $$m$$ numbers have been inserted in such a way that the resulting sequence is an $$A.P$$. and the ratio of $$\displaystyle { 7 }^{ th }$$ and $$(n-1)^{th}$$ numbers is $$5 : 9$$ . Find the value of $$n$$.
$$\displaystyle 1\times 2+2\times 3+3\times 4+4\times 5+...$$