Indefinite Integrals
$$\displaystyle \int \frac {\sin^8 x-\cos^8 x}{(1-2\sin^2x \cos^2x)}dx$$ is equal is to
Evaluate $$\displaystyle \int \frac{(2 \sin \theta + \sin 2 \theta) d\theta}{(\cos \theta - 1) \sqrt{\cos \theta + \cos^2 \theta + \cos^3 \theta}}$$
$$I = \displaystyle \int \frac{(2 \sin \theta + \sin 2 \theta) d\theta}{(\cos \theta - 1) \sqrt{\cos \theta + \cos^2 \theta + \cos^3 \theta}}$$
Put $$\cos \theta = x^2$$
$$\Rightarrow$$ $$- \sin \theta$$ $$d \theta = 2x dx$$
$$= 2 \displaystyle \int \frac{(1 + x^2)}{(1 - x^2)} . \frac{2x dx}{\sqrt{x^2 + x^4 + x^6}}$$
$$= 4 \displaystyle \int \frac{(1 + 1/x^2)dx}{(1/x - x) \sqrt{(1/x - x)^2 + 3}}$$
Put $$\frac{1}{x} - x = t$$
$$\Rightarrow \left ( - \frac{1}{x^2} - 1 \right ) dx = dt$$
$$= 4 \displaystyle \int \frac{dt}{t \sqrt{t^2 + 3}}$$
Again, put $$t^2 + 3 = u^2$$
$$\Rightarrow$$ $$2t$$ $$dt = 2u$$ $$du$$
$$\therefore$$ $$I = 4 \displaystyle \int \frac{- u du}{u(u^2 - 3)} = -4 \displaystyle \int \frac{du}{u^2 - 3}$$
$$= - \frac{2}{\sqrt 3} \log \left | \frac{u - \sqrt 3}{u + \sqrt 3} \right | + C$$
$$= - \frac{2}{\sqrt 3} \log \left | \frac{\sqrt{t^2 + 3} - \sqrt 3}{\sqrt{t^2 + 3} + \sqrt 3} \right | + C$$
$$= - \frac{2}{\sqrt 3} \log \left | \frac{\sqrt{x^2 + 1/x^2 + 1} - \sqrt 3}{\sqrt{x^2 + 1/x^2 + 1} + \sqrt 3} \right | + C$$
$$= - \frac{2}{3} \log \left | \frac{\sqrt{\cos \theta + \sec \theta + 1} - \sqrt 3}{\sqrt{\cos \theta + \sec \theta + 1} + \sqrt 3} \right | + C$$
$$\displaystyle \int \frac {\sin^8 x-\cos^8 x}{(1-2\sin^2x \cos^2x)}dx$$ is equal is to
Let $$\alpha \epsilon (0, \pi/2)$$ be fixed. If the integral $$\int \dfrac {\tan x + \tan \alpha}{\tan x - \tan \alpha} dx =$$ $$A (x) \cos 2\alpha + B(x) \sin 2\alpha + C$$, where $$C$$ is a constant of integration, then the functions $$A(x)$$ and $$B(x)$$ are respectively.
$$\int \dfrac {dx}{\cos x + \sqrt {3}\sin x}$$ equals
Find the integral of $$\displaystyle \int \frac {\sec^2x}{co\sec^2x}dx$$
Find the integral of $$\displaystyle \int \frac {2-3 \sin x}{\cos^2x}dx$$
Integrate the function $$\sin (ax + b) \cos (ax + b)$$
Integrate the function $$\displaystyle \frac {2\cos x-3 \sin x}{6 \cos x+4 \sin x}$$
$$\displaystyle \int \frac {dx}{\sin^2 x \cos^2x}$$ equals
$$\int_{\cos{2x}\cos{4x}\cos{6x}dx}$$
Find the integrals of the functions $$\sin x \sin 2x \sin 3x$$