Subjective Type

Find the shortest distance between lines $$\cfrac{x+1}{7}=\cfrac{y+1}{-6}=\cfrac{z+1}{1}$$ and $$\cfrac{x-3}{1}=\cfrac{y-5}{-2}=\cfrac{z-7}{1}$$

Solution

It is known that the shortest distance between the two lines,
$$\cfrac { x-{ x }_{ 1 } }{ a } =\cfrac { y-{ y }_{ 1 } }{ b } =\cfrac { z-{ z }_{ 1 } }{ c } $$ and $$\cfrac { x-{ x }_{ 2 } }{ a } =\cfrac { y-{ y }_{ 2 } }{ b } =\cfrac { z-{ z }_{ 2 } }{ c } $$ is given by,
$$d=\cfrac { \begin{vmatrix} { x }_{ 2 }-{ x }_{ 1 } & { y }_{ 2 }-{ y }_{ 1 } & { z }_{ 2 }-{ z }_{ 1 } \\ { a }_{ 1 } & { b }_{ 1 } & { c }_{ 1 } \\ { a }_{ 2 } & { b }_{ 2 } & { c }_{ 2 } \end{vmatrix} }{ \sqrt { { \left( { b }_{ 1 }{ c }_{ 2 }-{ b }_{ 2 }{ c }_{ 1 } \right) }^{ 2 }+{ \left( { c }_{ 1 }{ a }_{ 2 }-{ c }_{ 2 }{ a }_{ 1 } \right) }^{ 2 }+{ \left( { a }_{ 1 }{ b }_{ 2 }-{ a }_{ 2 }{ b }_{ 1 } \right) }^{ 2 } } } ....(1)$$
Comparing the given equations, we obtain
$${x}_{1}=-1, {y}_{1}=-1, {z}_{1}=-1$$
$${a}_{1}=7, {b}_{1}=-6, {c}_{1}=1$$
$${x}_{2}=3, {y}_{2}=5, {z}_{2}=7$$
$${a}_{2}=1, {b}_{2}=-2, {c}_{2}=1$$
Then, $$\begin{vmatrix} { x }_{ 2 }-{ x }_{ 1 } & { y }_{ 2 }-{ y }_{ 1 } & { z }_{ 2 }-{ z }_{ 1 } \\ { a }_{ 1 } & { b }_{ 1 } & { c }_{ 1 } \\ { a }_{ 2 } & { b }_{ 2 } & { c }_{ 2 } \end{vmatrix}=\begin{vmatrix} 4 & 6 & 8 \\ 7 & -6 & 1 \\ 1 & -2 & 1 \end{vmatrix}$$
$$=4(-6+2)-6(7-1)+8(-14+6)$$
$$=-16-36-64=-116$$
$$\Rightarrow\sqrt { { \left( { b }_{ 1 }{ c }_{ 2 }-{ b }_{ 2 }{ c }_{ 1 } \right) }^{ 2 }+{ \left( { c }_{ 1 }{ a }_{ 2 }-{ c }_{ 2 }{ a }_{ 1 } \right) }^{ 2 }+{ \left( { a }_{ 1 }{ b }_{ 2 }-{ a }_{ 2 }{ b }_{ 1 } \right) }^{ 2 } } =\sqrt { { \left( -6+2 \right) }^{ 2 }+{ \left( 1+7 \right) }^{ 2 }+{ \left( -14+6 \right) }^{ 2 } } =\sqrt { 16+36+64 } =\sqrt { 116 } =2\sqrt { 29 } $$
Substituting all the values in equation (1), we obtain
$$d=\cfrac{116}{2\sqrt 29}=\cfrac{-58}{\sqrt 29}=\cfrac{-2\times 29}{\sqrt 29}=-2\sqrt {29}$$
Since distance is always non-negative, the distance between the given lines is $$2\sqrt 29$$ units.


SIMILAR QUESTIONS

3D Geometry

Consider the line $$\displaystyle {L}_{1}:\dfrac{{x}+1}{3}=\dfrac{{y}+2}{1}=\dfrac{{z}+1}{2},\ \displaystyle {L}_{2}:\dfrac{{x}-2}{1}=\dfrac{{y}+2}{2}=\dfrac{{z}-3}{3}$$ The shortest distance between $$L_1$$ and $$L_2$$ is

3D Geometry

If the shortest distance between the lines $$\displaystyle \frac{x-1}{\alpha} = \frac{y+1}{-1} = \frac{z}{1}, \,\,\, (\alpha \neq -1)$$ and $$x + y + z + 1 = 0 = 2x - y + z + 3$$ is $$\displaystyle \frac{1}{\sqrt{3}}$$, then a value of $$\alpha$$ is :

3D Geometry

Find the shortest distance between the following pair of lines. $$\bar{r}=(\bar{i}+2\bar{j}+\bar{k})+\lambda(2\bar{i}-\bar{j}+3\bar{k})$$ & $$\bar{r}=(\bar{i}-3\bar{j}-\bar{k})+\mu (3\bar{i}+2\hat{j}-5\bar{k})$$.

3D Geometry

The shortest distance between the $$z$$-axis and the line $$x+ y + 2z - 3 = 0 , 2x + 3y + 4z - 4 $$, is

3D Geometry

The shortest distance between the lines $$\dfrac {x}{2} = \dfrac {y}{2} = \dfrac {z}{1}$$ and $$\dfrac {x + 2}{-1} = \dfrac {y - 4}{8} = \dfrac {z - 5}{4}$$ lies in the interval:

3D Geometry

The shortest distance between the lines $$x = y + 2 = 6z - 6$$ and $$x + 1 = 2y = -12z$$ is

3D Geometry

Find the shortest distance between the lines $$\vec { r } =\left( \hat { i } +2\hat { j } +\hat { k } \right) +\lambda \left( \hat { i } -\hat { j } +\hat { k } \right) $$ and $$\vec { r } =\hat { 2i } -\hat { j } -\hat { k } +\mu \left( \hat { 2i } +\hat { j } +2\hat { k } \right) $$

3D Geometry

Find the shortest distance between the lines whose vector equations are $$\vec {r} = (\hat {i} + 2\hat {j} + 3\hat {k}) + \lambda (\hat {i} - 3\hat {j} + 2\hat {k})$$ and $$\vec {r} = (4\hat {i} + 5\hat {j} + 6\hat {k}) + \mu (2\hat {i} + 3\hat {j} + \hat {k})$$.

3D Geometry

Find the shortest distance between the lines whose vector equations are : $$\vec { r } =(1-p)\hat { i } +(p-2)\hat { j } +(3-2p)\hat { k } $$ $$\vec { r } =(q+1)\hat { i } +(2q-1)\hat { j } -(2q-1)\hat { k } $$

3D Geometry

Find the shortest distance between lines $$\vec { r } =6\hat { i } +2\hat { j } +2\hat { k } +\lambda \left( \hat { i } -2\hat { j } +2\hat { k } \right) $$ and $$\vec { r } =-4\hat { i } -\hat { k } +\mu \left(3 \hat { i } -2\hat { j } -2\hat { k } \right) $$

Contact Details