Single Choice

If the shortest distance between the lines $$\displaystyle \frac{x-1}{\alpha} = \frac{y+1}{-1} = \frac{z}{1}, \,\,\, (\alpha \neq -1)$$ and $$x + y + z + 1 = 0 = 2x - y + z + 3$$ is $$\displaystyle \frac{1}{\sqrt{3}}$$, then a value of $$\alpha$$ is :

A$$\displaystyle \frac{32}{19}$$
Correct Answer
B$$-\displaystyle \frac{16}{19}$$
C$$-\displaystyle \frac{19}{16}$$
D$$\displaystyle \frac{19}{32}$$

Solution

Shortest distance between the lines $$\displaystyle \frac{x-1}{\alpha} = \frac{y+1}{-1} = \frac{z}{1}, \,\,\, (\alpha \neq -1)$$ and $$x + y + z + 1 = 0 = 2x - y + z + 3$$ is $$\displaystyle \frac{1}{\sqrt{3}}$$ Line of intersection of planes $$x + y + z + 1 = 0 = 2x - y + z + 3$$ is Eliminating $$y$$ gives $$3x+2z+4=0$$ $$\Rightarrow \displaystyle x=\frac{-2z-4}{3}$$ ----(1) Substituting above $$x$$ in $$x+y+z+1=0$$ gives $$3y+z-1=0$$ $$\Rightarrow z=-3y+1$$ ----(2) From (1) and (2), line equation is $$\displaystyle\frac{3x+4}{-2}=-3y+1=z$$ $$\Rightarrow \displaystyle\frac{x-(-4/3)}{-2/3}=\frac{y-(1/3)}{-1/3}=\frac{z}{1}$$ Given line is $$\displaystyle \frac{x-1}{\alpha} = \frac{y+1}{-1} = \frac{z}{1}$$ Shortest distance between above two skew lines is $$\displaystyle\frac{(\vec b-\vec a)\cdot(\vec c\times \vec d)}{|\vec c\times\vec d|}$$ where one line is passing through $$\vec a$$ and parallel to $$\vec c$$ and other one passes through $$\vec b$$ and parallel to $$\vec d$$ $$\vec a =(1,-1,0)$$ $$\vec b=\left (-\dfrac {4}{3},\dfrac {1}{3},0\right)$$ $$\vec c=(\alpha,-1,1)$$ $$\vec d=\left (-\dfrac {2}{3},-\dfrac {1}{3},1\right)$$ $$\therefore \displaystyle\frac{(\vec b-\vec a)\cdot(\vec c\times \vec d)}{|\vec c\times\vec d|}=\displaystyle \left| \frac { \begin{vmatrix} 7/3 & -4/3 & 0 \\ \alpha & -1 & 1 \\ -2/3 & -1/3 & 1 \end{vmatrix} }{ \begin{vmatrix} \hat { i } & \hat { j } & \hat { k } \\ \alpha & -1 & 1 \\ -2/3 & -1/3 & 1 \end{vmatrix} } \right| =\frac { 1 }{ \sqrt { 3 } } $$ Expanding determinants and simplifying gives $$48\alpha^2-48\alpha+12=10\alpha^2+16\alpha+12$$ $$\Rightarrow 38\alpha^2=64\alpha$$ $$ \displaystyle \Rightarrow \alpha=\frac{64}{38}=\frac{32}{19}$$ Hence, option A.


SIMILAR QUESTIONS

3D Geometry

Consider the line $$\displaystyle {L}_{1}:\dfrac{{x}+1}{3}=\dfrac{{y}+2}{1}=\dfrac{{z}+1}{2},\ \displaystyle {L}_{2}:\dfrac{{x}-2}{1}=\dfrac{{y}+2}{2}=\dfrac{{z}-3}{3}$$ The shortest distance between $$L_1$$ and $$L_2$$ is

3D Geometry

Find the shortest distance between the following pair of lines. $$\bar{r}=(\bar{i}+2\bar{j}+\bar{k})+\lambda(2\bar{i}-\bar{j}+3\bar{k})$$ & $$\bar{r}=(\bar{i}-3\bar{j}-\bar{k})+\mu (3\bar{i}+2\hat{j}-5\bar{k})$$.

3D Geometry

The shortest distance between the $$z$$-axis and the line $$x+ y + 2z - 3 = 0 , 2x + 3y + 4z - 4 $$, is

3D Geometry

The shortest distance between the lines $$\dfrac {x}{2} = \dfrac {y}{2} = \dfrac {z}{1}$$ and $$\dfrac {x + 2}{-1} = \dfrac {y - 4}{8} = \dfrac {z - 5}{4}$$ lies in the interval:

3D Geometry

The shortest distance between the lines $$x = y + 2 = 6z - 6$$ and $$x + 1 = 2y = -12z$$ is

3D Geometry

Find the shortest distance between the lines $$\vec { r } =\left( \hat { i } +2\hat { j } +\hat { k } \right) +\lambda \left( \hat { i } -\hat { j } +\hat { k } \right) $$ and $$\vec { r } =\hat { 2i } -\hat { j } -\hat { k } +\mu \left( \hat { 2i } +\hat { j } +2\hat { k } \right) $$

3D Geometry

Find the shortest distance between lines $$\cfrac{x+1}{7}=\cfrac{y+1}{-6}=\cfrac{z+1}{1}$$ and $$\cfrac{x-3}{1}=\cfrac{y-5}{-2}=\cfrac{z-7}{1}$$

3D Geometry

Find the shortest distance between the lines whose vector equations are $$\vec {r} = (\hat {i} + 2\hat {j} + 3\hat {k}) + \lambda (\hat {i} - 3\hat {j} + 2\hat {k})$$ and $$\vec {r} = (4\hat {i} + 5\hat {j} + 6\hat {k}) + \mu (2\hat {i} + 3\hat {j} + \hat {k})$$.

3D Geometry

Find the shortest distance between the lines whose vector equations are : $$\vec { r } =(1-p)\hat { i } +(p-2)\hat { j } +(3-2p)\hat { k } $$ $$\vec { r } =(q+1)\hat { i } +(2q-1)\hat { j } -(2q-1)\hat { k } $$

3D Geometry

Find the shortest distance between lines $$\vec { r } =6\hat { i } +2\hat { j } +2\hat { k } +\lambda \left( \hat { i } -2\hat { j } +2\hat { k } \right) $$ and $$\vec { r } =-4\hat { i } -\hat { k } +\mu \left(3 \hat { i } -2\hat { j } -2\hat { k } \right) $$

Contact Details