Subjective Type

Find the shortest distance between the following pair of lines. $$\bar{r}=(\bar{i}+2\bar{j}+\bar{k})+\lambda(2\bar{i}-\bar{j}+3\bar{k})$$ & $$\bar{r}=(\bar{i}-3\bar{j}-\bar{k})+\mu (3\bar{i}+2\hat{j}-5\bar{k})$$.

Solution

$$\begin{array}{l} According\, to\, question, \\ we\, have\, two\, pair\, of\, line.......... \\ { { \bar { r } }_{ 1 } }=(\bar { i } +2\bar { j } +\bar { k } )+\lambda (2\bar { i } -\bar { j } +3\bar { k } ) \\ { { \bar { r } }_{ 2 } }=(\bar { i } -3\bar { j } -\bar { k } )+\mu (3\bar { i } +2\hat { j } -5\bar { k } ) \\ Now, \end{array}$$ $$Comparing\, the\, given\, eq{ u^{ n } }\, \, with\, the\, \, equations:{ \overrightarrow { r } _{ 1 } }={ \overrightarrow { a } _{ 1 } }+\lambda \overrightarrow { { b_{ 1 } } } \, \, \, and\, \, \overrightarrow { { r_{ 2 } } } ={ \overrightarrow { a } _{ 2 } }+\lambda \overrightarrow { { b_{ 2 } } } \, $$ $$\begin{array}{l} { \overrightarrow { a } _{ 1 } }=\widehat { i } -2\widehat { j } +\widehat { k } \\ { \overrightarrow { a } _{ 2 } }=\widehat { i } -3\widehat { j } -\widehat { k } \\ \overrightarrow { { b_{ 1 } } } =2\widehat { i } -\widehat { j } +3\widehat { k } \\ \overrightarrow { { b_{ 2 } } } =3\widehat { i } +2\widehat { j } -5\widehat { k } \\ \therefore \, \, { \overrightarrow { \, \, \, a } _{ 2 } }-{ \overrightarrow { a } _{ 1 } }=\left( { \widehat { i } -3\widehat { j } -\widehat { k } } \right) -\left( { \widehat { i } -2\widehat { j } +\widehat { k } } \right) \\ \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, =\widehat { i } -3\widehat { j } -\widehat { k } -\widehat { i } +2\widehat { j } -\widehat { k } \\ \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, =(-\widehat { j } -2\widehat { k } )-----(i) \\ Now \\ \overrightarrow { { b_{ 1 } } } \times \overrightarrow { { b_{ 2 } } } =\left| \begin{array}{l} i\widehat { \, } \, \, \, \, \, \, \widehat { j } \, \, \, \, \, \, \, \, \widehat { k } \\ 2\, \, \, \, \, -1\, \, \, \, \, \, 3 \\ 3\, \, \, \, \, \, \, \, 2\, \, \, \, \, -5 \end{array} \right| \\ \, \, \, \, \, \, \, \, \, \, \, \, \, \, =\widehat { i } \, \, (5-6)\, -\widehat { j } \, (-10-9)\, +\widehat { k } \, (4+3) \\ \, \, \, \, \, \, \, \, \, \, \, \, \, \, =-\widehat { i } +19\widehat { j } \, +7\widehat { k } -----(ii) \\ \left| { \overrightarrow { { b_{ 1 } } } \times \overrightarrow { { b_{ 2 } } } } \right| =\sqrt { { { (-1) }^{ 2 } }+{ { (19) }^{ 2 } }+{ { (7) }^{ 2 } } } \\ \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, =\sqrt { 1+361+49 } =\sqrt { 411 } =21 \\ ({ \overrightarrow { \, \, \, a } _{ 2 } }-{ \overrightarrow { a } _{ 1 } })\, \, \, (\overrightarrow { { b_{ 1 } } } \times \overrightarrow { { b_{ 2 } } } )=\, \, (-\widehat { j } -2\widehat { k } )\, \, (-\widehat { i } +19\widehat { j } \, +7\widehat { k } ) \\ \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, =1+19-14=6 \\ and\, shortest\, dis\tan ce\, between\, the\, line: \\ d=\left| { \frac { { ({ { \overrightarrow { \, \, \, a } }_{ 2 } }-{ { \overrightarrow { a } }_{ 1 } })\, \, \, (\overrightarrow { { b_{ 1 } } } \times \overrightarrow { { b_{ 2 } } } ) } }{ { \left| { \overrightarrow { { b_{ 1 } } } \times \overrightarrow { { b_{ 2 } } } } \right| } } } \right| =\frac { 6 }{ { 21 } } =\frac { 2 }{ 7 } \\ so\, \, that\, the\, \, correct\, solution\, \frac { 2 }{ 7 } \end{array}$$


SIMILAR QUESTIONS

3D Geometry

Consider the line $$\displaystyle {L}_{1}:\dfrac{{x}+1}{3}=\dfrac{{y}+2}{1}=\dfrac{{z}+1}{2},\ \displaystyle {L}_{2}:\dfrac{{x}-2}{1}=\dfrac{{y}+2}{2}=\dfrac{{z}-3}{3}$$ The shortest distance between $$L_1$$ and $$L_2$$ is

3D Geometry

If the shortest distance between the lines $$\displaystyle \frac{x-1}{\alpha} = \frac{y+1}{-1} = \frac{z}{1}, \,\,\, (\alpha \neq -1)$$ and $$x + y + z + 1 = 0 = 2x - y + z + 3$$ is $$\displaystyle \frac{1}{\sqrt{3}}$$, then a value of $$\alpha$$ is :

3D Geometry

The shortest distance between the $$z$$-axis and the line $$x+ y + 2z - 3 = 0 , 2x + 3y + 4z - 4 $$, is

3D Geometry

The shortest distance between the lines $$\dfrac {x}{2} = \dfrac {y}{2} = \dfrac {z}{1}$$ and $$\dfrac {x + 2}{-1} = \dfrac {y - 4}{8} = \dfrac {z - 5}{4}$$ lies in the interval:

3D Geometry

The shortest distance between the lines $$x = y + 2 = 6z - 6$$ and $$x + 1 = 2y = -12z$$ is

3D Geometry

Find the shortest distance between the lines $$\vec { r } =\left( \hat { i } +2\hat { j } +\hat { k } \right) +\lambda \left( \hat { i } -\hat { j } +\hat { k } \right) $$ and $$\vec { r } =\hat { 2i } -\hat { j } -\hat { k } +\mu \left( \hat { 2i } +\hat { j } +2\hat { k } \right) $$

3D Geometry

Find the shortest distance between lines $$\cfrac{x+1}{7}=\cfrac{y+1}{-6}=\cfrac{z+1}{1}$$ and $$\cfrac{x-3}{1}=\cfrac{y-5}{-2}=\cfrac{z-7}{1}$$

3D Geometry

Find the shortest distance between the lines whose vector equations are $$\vec {r} = (\hat {i} + 2\hat {j} + 3\hat {k}) + \lambda (\hat {i} - 3\hat {j} + 2\hat {k})$$ and $$\vec {r} = (4\hat {i} + 5\hat {j} + 6\hat {k}) + \mu (2\hat {i} + 3\hat {j} + \hat {k})$$.

3D Geometry

Find the shortest distance between the lines whose vector equations are : $$\vec { r } =(1-p)\hat { i } +(p-2)\hat { j } +(3-2p)\hat { k } $$ $$\vec { r } =(q+1)\hat { i } +(2q-1)\hat { j } -(2q-1)\hat { k } $$

3D Geometry

Find the shortest distance between lines $$\vec { r } =6\hat { i } +2\hat { j } +2\hat { k } +\lambda \left( \hat { i } -2\hat { j } +2\hat { k } \right) $$ and $$\vec { r } =-4\hat { i } -\hat { k } +\mu \left(3 \hat { i } -2\hat { j } -2\hat { k } \right) $$

Contact Details