3D Geometry
Consider the line $$\displaystyle {L}_{1}:\dfrac{{x}+1}{3}=\dfrac{{y}+2}{1}=\dfrac{{z}+1}{2},\ \displaystyle {L}_{2}:\dfrac{{x}-2}{1}=\dfrac{{y}+2}{2}=\dfrac{{z}-3}{3}$$ The shortest distance between $$L_1$$ and $$L_2$$ is
The shortest distance between the lines $$x = y + 2 = 6z - 6$$ and $$x + 1 = 2y = -12z$$ is
The lines are $$\dfrac {x}{6} = \dfrac {y + 2}{6} = \dfrac {z - 1}{1}$$
and $$\dfrac {x + 1}{12} = \dfrac {y}{6} = \dfrac {z}{-1}$$
Here,
$$\vec {a}_{1} = -2\hat {j} + \hat {k}, b_{1} = 6\hat {i} + 6\hat {j} + \hat {k}, \vec {a}_{2} = -\hat {i}, \vec {b}_{2} = 12\hat {i} + 6\hat {j} - \hat {k}$$
$$\vec {b}_{1} \times \vec {b}_{2} = \begin{vmatrix} \hat {i}& \hat {j} & k\\ 6 & 6 &1 \\ 12 & 6 & -1\end{vmatrix} = -12\hat {i} + 18\hat {j} - 36\hat {k}$$
Shortest distance $$= \dfrac {|(\vec {a_{2}} - \vec {a_{1}}).(\vec {b_{1}} \times \vec {b_{2}})|}{|\vec {b_{1}} \times \vec {b_{2}}|}$$
$$= \dfrac {|(-\hat {i} + 2\hat {j} - \hat {k}).(-12i + 18\hat {j} - 36\hat {k})|}{\sqrt {(-12)^{2} + (18)^{2} + (-36)^{2}}}$$
$$= \dfrac {|+12 + 36 + 36|}{\sqrt {1764}} = \dfrac {84}{42} = 2$$
Hence, the shortest distance is $$2$$.
Consider the line $$\displaystyle {L}_{1}:\dfrac{{x}+1}{3}=\dfrac{{y}+2}{1}=\dfrac{{z}+1}{2},\ \displaystyle {L}_{2}:\dfrac{{x}-2}{1}=\dfrac{{y}+2}{2}=\dfrac{{z}-3}{3}$$ The shortest distance between $$L_1$$ and $$L_2$$ is
If the shortest distance between the lines $$\displaystyle \frac{x-1}{\alpha} = \frac{y+1}{-1} = \frac{z}{1}, \,\,\, (\alpha \neq -1)$$ and $$x + y + z + 1 = 0 = 2x - y + z + 3$$ is $$\displaystyle \frac{1}{\sqrt{3}}$$, then a value of $$\alpha$$ is :
Find the shortest distance between the following pair of lines. $$\bar{r}=(\bar{i}+2\bar{j}+\bar{k})+\lambda(2\bar{i}-\bar{j}+3\bar{k})$$ & $$\bar{r}=(\bar{i}-3\bar{j}-\bar{k})+\mu (3\bar{i}+2\hat{j}-5\bar{k})$$.
The shortest distance between the $$z$$-axis and the line $$x+ y + 2z - 3 = 0 , 2x + 3y + 4z - 4 $$, is
The shortest distance between the lines $$\dfrac {x}{2} = \dfrac {y}{2} = \dfrac {z}{1}$$ and $$\dfrac {x + 2}{-1} = \dfrac {y - 4}{8} = \dfrac {z - 5}{4}$$ lies in the interval:
Find the shortest distance between the lines $$\vec { r } =\left( \hat { i } +2\hat { j } +\hat { k } \right) +\lambda \left( \hat { i } -\hat { j } +\hat { k } \right) $$ and $$\vec { r } =\hat { 2i } -\hat { j } -\hat { k } +\mu \left( \hat { 2i } +\hat { j } +2\hat { k } \right) $$
Find the shortest distance between lines $$\cfrac{x+1}{7}=\cfrac{y+1}{-6}=\cfrac{z+1}{1}$$ and $$\cfrac{x-3}{1}=\cfrac{y-5}{-2}=\cfrac{z-7}{1}$$
Find the shortest distance between the lines whose vector equations are $$\vec {r} = (\hat {i} + 2\hat {j} + 3\hat {k}) + \lambda (\hat {i} - 3\hat {j} + 2\hat {k})$$ and $$\vec {r} = (4\hat {i} + 5\hat {j} + 6\hat {k}) + \mu (2\hat {i} + 3\hat {j} + \hat {k})$$.
Find the shortest distance between the lines whose vector equations are : $$\vec { r } =(1-p)\hat { i } +(p-2)\hat { j } +(3-2p)\hat { k } $$ $$\vec { r } =(q+1)\hat { i } +(2q-1)\hat { j } -(2q-1)\hat { k } $$
Find the shortest distance between lines $$\vec { r } =6\hat { i } +2\hat { j } +2\hat { k } +\lambda \left( \hat { i } -2\hat { j } +2\hat { k } \right) $$ and $$\vec { r } =-4\hat { i } -\hat { k } +\mu \left(3 \hat { i } -2\hat { j } -2\hat { k } \right) $$