3D Geometry
Consider the line $$\displaystyle {L}_{1}:\dfrac{{x}+1}{3}=\dfrac{{y}+2}{1}=\dfrac{{z}+1}{2},\ \displaystyle {L}_{2}:\dfrac{{x}-2}{1}=\dfrac{{y}+2}{2}=\dfrac{{z}-3}{3}$$ The shortest distance between $$L_1$$ and $$L_2$$ is
Find the shortest distance between the lines $$\vec { r } =\left( \hat { i } +2\hat { j } +\hat { k } \right) +\lambda \left( \hat { i } -\hat { j } +\hat { k } \right) $$ and $$\vec { r } =\hat { 2i } -\hat { j } -\hat { k } +\mu \left( \hat { 2i } +\hat { j } +2\hat { k } \right) $$
The equations of the given lines are
$$\vec { r } =\left( \hat { i }
+2\hat { j } +\hat { k } \right) +\lambda \left( \hat { i } -\hat { j }
+\hat { k } \right) $$ and
$$\vec { r } =\hat { 2i } -\hat { j } -\hat { k } +\mu \left( \hat { 2i } +\hat { j } +2\hat { k } \right) $$
It is known that the shortest distance between the lines $$\vec { r }
=\vec { { a }_{ 1 } } +\lambda \vec { { b }_{ 1 } } $$ and $$\vec { r }
=\vec { { a }_{ 2 } } +\mu \vec { { b }_{ 2 } } $$ is given by,
$$d=\left|
\cfrac { \left( \vec { { b }_{ 1 } } \times \vec { { b }_{ 2 } }
\right) \left( \vec { { a }_{ 1 } } -\vec { { a }_{ 2 } } \right) }{
\left| \vec { { b }_{ 1 } } \times \vec { { b }_{ 2 } } \right| }
\right| .....(1)$$
Comparing the given equations, we obtain
$$\vec { { a }_{ 1 } } =\hat { i } +2\hat { j } +\hat { k } $$
$$\vec { { b }_{ 1 } } =\hat { i } -\hat { j } +\hat { k } $$
$$\vec { { a }_{ 2 } } =2\hat { i } -\hat { j } -\hat { k } $$
$$\vec { { b }_{ 2 } } =2\hat { i } +\hat { j } +2\hat { k } $$
$$\vec
{ { a }_{ 2 } } -\vec { { a }_{ 1 } } =\left( 2\hat { i } -\hat { j }
-\hat { k } \right) -\left( \hat { i } +2\hat { j } +\hat { k }
\right) =\left( \hat { i } -3\hat { j } -2\hat { k } \right) $$
$$\vec
{ { b }_{ 1 } } \times \vec { { b }_{ 2 } } =\begin{vmatrix} \hat { i }
& \hat { j } & \hat { j } \\ 1 & -1 & 1 \\ 2 & 1
& 2 \end{vmatrix}$$
$$\vec { { b }_{ 1 } } \times \vec { { b }_{
2 } } =(-2-1)\hat { i } -(2-2)\hat { j } +(1+2)\hat { k } =-3\hat { i }
+3\hat { k } $$
$$\Rightarrow$$ $$\left| \vec { { b }_{ 1 } } \times
\vec { { b }_{ 2 } } \right| =\sqrt { { \left( -3 \right) }^{ 2 }+{
\left( 3 \right) }^{ 2 } } =\sqrt { 18 } =3\sqrt { 2 } $$
Substituting all the values in equation (1), we obtain
$$d=\left|
\cfrac { \left( \hat { 3\hat { i } } +3\hat { k } \right) .\left(
\hat { i } -3\hat { j } -2\hat { k } \right) }{ 3\sqrt { 2 } }
\right| $$
$$\Rightarrow$$ $$d=\left| \cfrac { -3.1+3(-2) }{ 3\sqrt { 2 } } \right| $$
$$\Rightarrow$$ $$d=\left| \cfrac { -9 }{ 3\sqrt { 2 } } \right| $$
$$\Rightarrow$$ $$d=\cfrac{3}{\sqrt 2}=\cfrac{3\times \sqrt {2}}{\sqrt {2} \times \sqrt {2}}=\cfrac {3\sqrt 2}{2}$$
Therefore, the shortest distance between the two lines is $$\cfrac{3\sqrt 2}{2}$$ units.
Consider the line $$\displaystyle {L}_{1}:\dfrac{{x}+1}{3}=\dfrac{{y}+2}{1}=\dfrac{{z}+1}{2},\ \displaystyle {L}_{2}:\dfrac{{x}-2}{1}=\dfrac{{y}+2}{2}=\dfrac{{z}-3}{3}$$ The shortest distance between $$L_1$$ and $$L_2$$ is
If the shortest distance between the lines $$\displaystyle \frac{x-1}{\alpha} = \frac{y+1}{-1} = \frac{z}{1}, \,\,\, (\alpha \neq -1)$$ and $$x + y + z + 1 = 0 = 2x - y + z + 3$$ is $$\displaystyle \frac{1}{\sqrt{3}}$$, then a value of $$\alpha$$ is :
Find the shortest distance between the following pair of lines. $$\bar{r}=(\bar{i}+2\bar{j}+\bar{k})+\lambda(2\bar{i}-\bar{j}+3\bar{k})$$ & $$\bar{r}=(\bar{i}-3\bar{j}-\bar{k})+\mu (3\bar{i}+2\hat{j}-5\bar{k})$$.
The shortest distance between the $$z$$-axis and the line $$x+ y + 2z - 3 = 0 , 2x + 3y + 4z - 4 $$, is
The shortest distance between the lines $$\dfrac {x}{2} = \dfrac {y}{2} = \dfrac {z}{1}$$ and $$\dfrac {x + 2}{-1} = \dfrac {y - 4}{8} = \dfrac {z - 5}{4}$$ lies in the interval:
The shortest distance between the lines $$x = y + 2 = 6z - 6$$ and $$x + 1 = 2y = -12z$$ is
Find the shortest distance between lines $$\cfrac{x+1}{7}=\cfrac{y+1}{-6}=\cfrac{z+1}{1}$$ and $$\cfrac{x-3}{1}=\cfrac{y-5}{-2}=\cfrac{z-7}{1}$$
Find the shortest distance between the lines whose vector equations are $$\vec {r} = (\hat {i} + 2\hat {j} + 3\hat {k}) + \lambda (\hat {i} - 3\hat {j} + 2\hat {k})$$ and $$\vec {r} = (4\hat {i} + 5\hat {j} + 6\hat {k}) + \mu (2\hat {i} + 3\hat {j} + \hat {k})$$.
Find the shortest distance between the lines whose vector equations are : $$\vec { r } =(1-p)\hat { i } +(p-2)\hat { j } +(3-2p)\hat { k } $$ $$\vec { r } =(q+1)\hat { i } +(2q-1)\hat { j } -(2q-1)\hat { k } $$
Find the shortest distance between lines $$\vec { r } =6\hat { i } +2\hat { j } +2\hat { k } +\lambda \left( \hat { i } -2\hat { j } +2\hat { k } \right) $$ and $$\vec { r } =-4\hat { i } -\hat { k } +\mu \left(3 \hat { i } -2\hat { j } -2\hat { k } \right) $$